Strip profile and flatness seminar course

- 1. Basic features of strip crown in conventional 4-high mill
 - a. Strip crown transient through one rolling campaign in general product-mix
 - b. Strip crown transient through one rolling campaign in narrow width product such as tin plate black coil
 - c. Concept of body crown and edge drop (feather edge)
 - d. General strip crown behavior by strip width
 - e. General strip crown behavior by thickness
 - f. General strip crown behavior by deformation resistance
 - g. Influence of each stands to delivery strip crown
 - h. Roll thermal crown
 - i. Roll wear
 - j. Influence of BUR wear
 - k. Rougher WR crown, transient of entry sheet bar crown and its influence to finisher stands
 - l. WR crown line-up in conventional 4high mill
 - m. Edge build up and high spot
 - n. Influence of hot strip crown to cold strip crown
- 2. Basic features of strip flatness
 - a. Intuitive knowledge on flatness change
 - b. Flatness sensitivity by thickness and width
 - c. Influence of crown change to strip flatness
 - d. Influence of each stands to delivery strip flatness
 - e. Influence of ROT and coiling to strip flatness
 - f. Capability of skin pass mill to flatness
 - g. Influence of entry strip flatness to the delivery flatness at cold rolling mill
- 3. Practical ways to control strip crown, or how to use roll crowning, in conventional 4-high mill
 - a. Reduction of strip crown by taper work roll
 - b. Reduction of strip crown with big BUR crown
 - c. Special roll crown for tin plate black coil
 - e. Other introduced ideas by engineers before the installation of crown control devices
- 4. Introduction of crown control device to HSM finisher stands
 - a. Strong WR bender
 - b. Work roll shifting with CVC-type roll crown
 - c. Work roll shifting with one-sided taper roll crown
 - e. Work roll shifting to prevent edge build-up and high-spot
 - f. Work roll shifting to produce optimal profile for tin plate black coil with minimum tolerance
 - d. Pair-cross Mill
- 5. Strip crown calculation
 - a. Explanation of basic concept
 - b. Roll deformation model by "the strip crown under uniform pressure"
 - c. Strip deformation model by "Crown-ratio heredity coefficient" and "Imprinting ratio"
- 6. Strip flatness calculation
 - a. Old theory of strip flatness
 - b. New theory of strip flatness

c. Flatness calculation by "Flatness disturbance coefficient"

- 7. Combined calculation of strip crown and flatness for 7 stands finisher
 - a. Combined calculation formula to calculate strip crown and flatness
 - b. Examples of calculation
- 8. Principle of crown-flatness set-up
 - a. General way of crown-flatness set-up
 - b. Crown-flatness set-up considering light gauge rolling
 - c. Crown-flatness set-up considering width change at finisher
- 9. Profile defects: Causes and countermeasures
 - a. Big crown
 - b. Wedge
 - c. Edge build up
 - d. High spot